Respuesta :
Answer:
The answer is C) [tex]12\sqrt{2}[/tex].
Step-by-step explanation:
For a real number [tex]a[/tex],
[tex]\sqrt{a} \cdot \sqrt{a} = a[/tex].
In other words, multiplying a square root by itself gets rid of the square root.
How does this rule apply here?
[tex]24 = 2\times 12[/tex].
Similarly,
[tex]\sqrt{24} = \sqrt{2}\times \sqrt{12}[/tex].
That is:
[tex]\begin{aligned}\sqrt{24}\times \sqrt{12} &= (\sqrt{2}\times \sqrt{12}) \times \sqrt{12}\\&=\sqrt{2}\times (\sqrt{12}\times \sqrt{12}) && \begin{array}{l}\text{By the associative property}\\\text{of multiplication}\end{array}\\&=\sqrt{2} \times 12\\ &= 12\sqrt{2}\end{aligned}[/tex].
Answer: Â The correct answer is: Â [C]:
______________________________________________
          →  " 12sqroot " ;  or, write as:  " 12√2 " .
______________________________________________
Step-by-step explanation:
______________________________________________
√24 * √12 = ?
Let us start by simplifying:  " √24 " ;
  24 = 4 * 6 ;
So;  √24 = √4 *√6  ;
 √4 = 2 ;
So:  " √24  = √4 *√6  =  2√6 " .
______________________________________________
Now, let us simplify:  " √12 " :
______________________________________________
  " √12  = ?  "
    12 = 4 * 3 ;
So:  "√12 = √4 *√3  " ;
  √4 * √3 = 2√3 ;
So:  "√12 = √4 *√3 = 2√3 " .
______________________________________________
We are asked to solve—"simplify"— "√24 * √12 " .
 √24 = 2√6 ; as we simplified above.
 √12 =  2√3  ; as we simplified above.
______________________________________________
So:  " √24 * √12 " ;
   = 2√6  * 2√3 ; Â
   = ?  ;  Note:  "2 * 2 = 4 " ; and:  "√6 * √3 = √(6*3) = √18 ;
So;   2√6  * 2√3 ;
   =  4√18 ;
Now, we can simplify this value further:
  by simplifying:  " √18 " ;
    18 = 9 * 2 ;
So:   " √18 = √9 *√2  = 3 √2 " ;
So:  " 4√18 = 4 * (3√2) =  12√2 " .
   →  which  is our answer:  " 12√2 " .
  →  which corresponds to: Â
   →  Answer choice:  [C]:  " 12 * sq root 2 " .  {or, write as:  " 12√2 ".}.
_____________________________________________
Hope this answer and explanation is of help to you!
    Wishing you the best in your academic endeavors
          — and within the "Brainly" community!
_____________________________________________
  Â
 Â