Respuesta :
Answer:
a) Â [tex]r_{max}[/tex] = 1,049 Â [tex]R_{e}[/tex]
, b) Â [tex]r_{max}[/tex] = 1,276 Â [tex]R_{e}[/tex]
Explanation:
For this exercise we must look for the Earth's escape velocity, for this we use the conservation of energy at two points on the surface and one point at a very distant point.
Initial. Earth's surface
   Em₀ = K + U = ½ m v² - G m M / [tex]R_{e}[/tex]
Final. Very far point
    [tex]Em_{f}[/tex] = U = - G m M / [tex]r_{max}[/tex]
Energy is conserved
    Emo =  [tex]Em_{f}[/tex]
    ½ m v² - G m M /[tex]R_{e}[/tex] = - G m M /  [tex]r_{max}[/tex]
    v² = 2 G M (1 / [tex]R_{e}[/tex] - 1 /  [tex]r_{max}[/tex])
The escape velocity is defined as the speed to take the projectile to an infinite distance ([tex]r_{max}[/tex] = ∞)
   v = √ (2GM / [tex]R_{e}[/tex])
In our case the speed is v = 0.216 vesc
Let's clear the maximum height
   1 /  [tex]R_{e}[/tex] - 1 / [tex]r_{max}[/tex] = v² / 2GM
   1 / [tex]r_{max}[/tex] = 1 /  [tex]R_{e}[/tex] - v² / 2GM
We substitute and calculate
    1 / [tex]r_{max}[/tex] = 1 /  [tex]R_{e}[/tex] - 0.216² (2GM / Re) / 2GM
    1 / [tex]r_{max}[/tex] = 1 /  [tex]R_{e}[/tex] - 0.046656 /  [tex]R_{e}[/tex]
    1 / [tex]r_{max}[/tex] = 1 /  [tex]R_{e}[/tex] (1 -0.046656)
    [tex]r_{max}[/tex] =  [tex]R_{e}[/tex] / 0.953344 = 1.049  [tex]R_{e}[/tex]
    [tex]r_{max}[/tex] = 1,049  [tex]R_{e}[/tex]
b) the kinetic energy is 0.216 of the kinetic energy to escape from the earth
Kinetic energy
    K = ½ m vesc²
    K = ½ m 2GM /  [tex]R_{e}[/tex] = A
Where A is the value of the kinetic energy of escape, in our case we have
     0.216 A = ½ m v²
     v² = (0.216 A) 2 / m
We substitute in the equation of maximum height
     1 / [tex]r_{max}[/tex] = 1 /  [tex]R_{e}[/tex] - v² / 2GM
     1 / [tex]r_{max}[/tex] = 1 /  [tex]R_{e}[/tex] - (0.216 A 2/m) / 2GM
We substitute the value of A
     1 / [tex]r_{max}[/tex] = 1 /  [tex]R_{e}[/tex] - 0.216 2/m (1/2 m 2GM /  [tex]R_{e}[/tex]) 1 / 2GM
     1 / [tex]r_{max}[/tex] = 1 /  [tex]R_{e}[/tex] - 0.216 1 /  [tex]R_{e}[/tex]
     1 / [tex]r_{max}[/tex] = 1 /  [tex]R_{e}[/tex] (1-0.216)
      [tex]r_{max}[/tex] =  [tex]R_{e}[/tex] /0.784
      [tex]r_{max}[/tex] = 1,276  [tex]R_{e}[/tex]
c) the initial mechanical energy
The definition of the escape velocity is the speed to take the body to an infinite distance with zero speed, the energy difference is zero
      K = U
     Em = 0