Respuesta :
Answer:
a)  θ = π
b)  θ  = 24°
c)  760 miles /hour  ,  3800 miles/hour
d)  sin α / 2√ (cos α + 1 )/2*
Step-by-step explanation:
a)  If 1 is a mach number then  1/M  = 1/1  = 1
sin (θ/2) = 1/M   ⇒  sin (θ/2) = 1    ⇒ arcsin (1)  = π/2
Then   (θ/2)  =  π/2    ⇒  θ = π
b)  If 5 is a mach number then  1/M  = 1/5  =  0.2
sin (θ/2) = 1/5   ⇒  arcsin (0.2)   Â
θ/2  = 12°    ⇒   θ  = 24°
c)  speed of sound is  760 miles/hour
speed of an object with mach number 1 Â is 760 miles /hour
speed of an object with mach number 5  is  3800 miles/hour
d) We know:
sin2α =  2 sinα cosα    or    sin α  = 2 sinα/2 cosα/2 Â
sinα/2  =  sin α / 2*cos α/2   (1)
And  cos 2α  =  2cos² α/2 - 1  then     cosα  = 2* cos ²α/2 - 1
cos ²α/2  = ( cosα + 1 )/2   ⇒  cos α/2  =√ (cos α + 1 )/2
Plugging that value in equation 1 we get
sinα/2  =  sin α / 2√ (cos α + 1 )/2*
Sound wave is caused by the movement of the airplane when passing through a cone as it moves farther from the sound
- The angle at mach number 1 is [tex]\mathbf{\theta = 180}[/tex]
- The angle at mach number 5 is [tex]\mathbf{\theta = 23}[/tex]
- The speeds at both mach numbers are 760 miles per hour, and 3800 miles per hour.
- The equation in terms of θ is [tex]\mathbf{sin(\frac{\theta}2) = \frac{\frac{sin \theta}{2}}{\sqrt{\frac{cos \theta + 1}{2}}}}[/tex]
The given parameters are:
[tex]\mathbf{sin(\frac{\theta}{2}) = \frac 1M}[/tex]
(a) The angle at mach number 1
This means that M = 1.
So, we have:
[tex]\mathbf{sin(\frac{\theta}{2}) = \frac 11}[/tex]
Divide
[tex]\mathbf{sin(\frac{\theta}{2}) = 1}[/tex]
Take arc sin of both sides
[tex]\mathbf{\frac{\theta}{2} = sin^{-1}(1)}[/tex]
This gives
[tex]\mathbf{\frac{\theta}{2} = 90}[/tex]
Multiply both sides by 2
[tex]\mathbf{\theta = 180}[/tex]
(b) The angle at mach number 5
This means that M = 5
So, we have:
[tex]\mathbf{sin(\frac{\theta}{2}) = \frac 15}[/tex]
Divide
[tex]\mathbf{sin(\frac{\theta}{2}) = 0.2}[/tex]
Take arc sin of both sides
[tex]\mathbf{\frac{\theta}{2} = sin^{-1}(0.2)}[/tex]
This gives
[tex]\mathbf{\frac{\theta}{2} = 11.5}[/tex]
Multiply both sides by 2
[tex]\mathbf{\theta = 23}[/tex]
(c) The speed of sound at mach numbers (a) and (b)
The speed of sound is given at:
[tex]\mathbf{v = 760mih^{-1}}[/tex]
At mach number 1, the speed is:
[tex]\mathbf{v_1 = 760mih^{-1} \times 1}[/tex]
[tex]\mathbf{v_1 = 760mih^{-1} }[/tex]
At mach number 5, the speed is:
[tex]\mathbf{v_5 = 760mih^{-1} \times 5}[/tex]
[tex]\mathbf{v_5 = 3800mih^{-1} }[/tex]
Hence, the speeds at both mach numbers are 760 miles per hour, and 3800 miles per hour.
(d) The equation in terms of θ
We have:
[tex]\mathbf{\frac{sin \theta}{2} = sin(\frac{\theta}2) cos(\frac{\theta}{2})}[/tex]
and
[tex]\mathbf{\frac{cos \theta}{2} =\sqrt{\frac{cos \theta + 1}{2}}}[/tex]
So, the equation [tex]\mathbf{\frac{sin \theta}{2} = sin(\frac{\theta}2) cos(\frac{\theta}{2})}[/tex] becomes
[tex]\mathbf{\frac{sin \theta}{2} = sin(\frac{\theta}2) \times \sqrt{\frac{cos \theta + 1}{2}}}[/tex]
Make [tex]\mathbf{sin(\frac{\theta}2) }[/tex] the subject
[tex]\mathbf{sin(\frac{\theta}2) = \frac{\frac{sin \theta}{2}}{\sqrt{\frac{cos \theta + 1}{2}}}}[/tex]
Hence, the equation in terms of θ is
[tex]\mathbf{sin(\frac{\theta}2) = \frac{\frac{sin \theta}{2}}{\sqrt{\frac{cos \theta + 1}{2}}}}[/tex]
Read more about sound waves at:
https://brainly.com/question/5714146