Answer:
ω = 5.5 rad/s
Explanation:
    [tex]L = I * \omega (1)[/tex]
    where I = moment of inertia regarding the axis of rotation, and ω =
    angular speed of the rotating body.
    [tex]L_{o} = L_{f} (2)[/tex]
    where L₀ = I₀ * ω₀,  Lf = If * ωf.
    I₀ is the moment of inertia of a solid disk rotating around an axis
    passing through its center, as follows:
   [tex]I_{o} =\frac{1}{2} * m* r^{2} = \frac{1}{2} * 22 kg*(2.3m)^{2} = 58.2 kgm2 (3)[/tex]
   If, is the moment of inertia after dropping the clump of clay, which adds
   its own moment of inertia as a point mass, as follows:
   [tex]I_{f} =\frac{1}{2} * m* r^{2} + m_{cl} * r_{cl}^{2} =58.2 kgm2 + (8.7kg)*(1.5m)^{2} \\ = 58.2 kgm + 19.6 kgm2 = 77.8 kgm2 (4)[/tex]
    [tex]\omega_{f} = \frac{I_{o} *\omega_{o} }{I_{f}} = \frac{58.2kgm2*7.3rad/s}{77.8kgm2} = 5.5 rad/s (5)[/tex]